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Abstract

We describe a model for an interdisciplinary course in 

scientific modeling and simulation. We discuss the 

course structure and content, as well as the results of 

our evaluation process.
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1 Introduction 

This paper describes a new upper-level undergraduate 

course in scientific modeling and simulation. The 

course is centered on a sequence of projects, each 

based on a realistic scientific problem. We teach the 

students the mathematics necessary to model the 

problem, and the numerical and computational 

methods for its solution. We then teach the students 

how to implement these methods using object-

oriented programming. We use Microsoft Visual C++ 

6.0 and its associated Microsoft Foundation Classes 

(MFC). In particular, the students develop dialog-

based windows programs that take full advantage of 

our computers’ graphical capabilities. The scientific 

and programming aspects of the course are integrated 

with one another and taught concurrently. The course 

is inherently interdisciplinary, and has been team-

taught by one computer scientist and one applied 

mathematician.

In this paper, we present the course model, including 

a description of the course’s topics. We shall also 

describe some of the projects that have been 

developed especially for this course, together with 

references. Finally, we shall present the results of our 

evaluation of the effectiveness of the course.  

We have two primary audiences for our course. First 

are computer science majors who are looking for 

additional experience with mathematics and scientific 

applications.  Second are majors in mathematics and 

the sciences who wish to take a second course in 

computing that is tailored to their discipline. 

This course is valuable to our computer science 

majors because it exposes them to realistic scientific 

problems and the mathematics necessary for their 

solution. The Steelman draft of Computing Curricula 

2001 Computer Science [11, Chap. 9] recommends 

that computer science majors take additional 

mathematics in areas like numerical methods. They 

also recommend that computer science majors engage 

in an in-depth study of some subject that uses 

computing in some substantive way. This course 

meets these goals. 

The course is also valuable to majors in the sciences. 

Most of these students take only one general 

introductory course in computer science. Our course 

expands on the topics that they learned in their 

introductory course and drives home the fundamental 

importance of object-oriented programming in a 

setting that is tailored for science and mathematics 

students. The Steelman draft [11, Chap. 12] 

emphasizes the need for computer science 

departments to teach computing across the 

curriculum, and holds up an example of a 

computational science course as an example of an 

area-wide or multidisciplinary course that our 

departments can offer.   

2 Audience 

As we noted in our introduction, the primary audience 

for our course consists of computer science majors 

with an interest in science and mathematics, as well as 
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science and math majors who wish to take a second 

course in computer science. Another group of 

students that have taken the course are computer 

science majors who are more interested in learning 

MFC and windows programming than the scientific 

content of the course. In part this is because we 

currently do not have a course that covers MFC. 

More interestingly, we have been approached by the 

director of the graduate program in mathematics 

education about the possibility of offering a graduate 

level version of this course to in-service high school 

teachers working towards their Master’s degrees. 

The prerequisites for the course include our 

Introduction to Computer Science I course, which 

covers C++ programming up through classes. We also 

require students to take Calculus 1 and Calculus 2. 

Despite this minimal list of prerequisites, there are 

many interesting and real scientific problems that can 

be studied in the course. 

3 Format 

Our course is inherently interdisciplinary, and is 

team-taught by one computer scientist and one 

applied mathematician.  

The course is organized around a series of projects. 

Each project is a self-contained scientific question. As 

an example, consider the following: At what angle 

should a real baseball be thrown to maximize the 

horizontal distance it will travel, taking into account 

air resistance? 

We begin each project by learning the mathematics 

necessary to model the problem, and constructing that 

model. We then teach the numerical analysis 

necessary to construct an algorithm that can compute 

the solution. 

Next, we teach students the programming techniques 

that are needed to implement the numerical method. 

Our emphasis is on object-oriented programming 

techniques. In particular, we use Visual C++ 6.0 and 

MFC as our implementation language. This choice 

was made because this is the language used in our 

Introduction to Computer Science Programming 1 

course. We focus our attention on dialog-based 

windows programming that take full use of the 

graphical capabilities of MFC.

Our course model is especially suited to teaching 

object-oriented programming because the programs 

break down naturally into routines for input, output 

and computation. The programs are sufficiently 

complex that the students see immediately the 

benefits of this approach. The complexity of the 

programs also drives home to the students the 

importance of good software design; we spend class 

time discussing this issue.  

The programs that students write are not the end of 

the course; they are used as tools to solve scientific 

problems. Students find that, even if their program is 

running correctly, it may not be giving them the 

answers to the scientific questions that they need to 

know. Because students use their programs as well as 

write them, we find that students revise their 

programs as they discover more about the scientific 

problem.  

The course itself is a mixture of traditional lecture and 

computer laboratory. Our class met twice a week for 

75 minutes, and we had a lecture component and a 

laboratory component to nearly every class meeting. 

Student progress is assessed primarily by project 

reports. At the conclusion of each project, students 

hand in a complete report of their investigations. The 

report contains the mathematical model for the 

problem, including an outline of its derivation. It also 

describes the mathematics of the algorithm that is 

used in the solution of the problem. Students discuss 

the code for the program that they have written to 

solve the problem. Finally, students describe the 

results of their investigations, and draw conclusions. 

We prefer this method of assessment because it helps 

develop student’s communication skills. For some 

projects, we allow the students to work in teams; 

other projects are solved singly. Communication 

skills and teamwork have been identified in the 

Steelman draft of Computing Curricula 2001 

Computer Science [11, §§ 9.1.4, 9.1.5] as an 

important part of a good computer science 

curriculum.  

Our experience using this method of assessment has 

been positive. However, we find that when there is 

one deadline for the entire project, students work on 

their programs right up to the deadline, and 

consequently do not spend sufficient time analyzing 

the results and drawing conclusions. We recommend 

that adopters of this method have two deadlines, one 

for the program and a later date for the project report. 

4 Topics 

We teach the course by examining a sequence of 

projects. As a part of each project, we teach the 

Proceedings of the Sixth International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing and First  
ACIS International Workshop on Self-Assembling Wireless Networks (SNPD/SAWN’05) 

0-7695-2294-7/05 $20.00 © 2005 IEEE



students some new mathematics and some new 

programming techniques.

Mathematically, we begin by reviewing the usual 

methods for numerical integration; in particular, we 

discuss the Trapezoidal Rule and Simpson’s Rule. 

These topics are now a standard part of most calculus 

sequences [20 §7.7]. Next, we teach students how to 

model problems using ordinary differential equations.  

We continue with methods for solving initial value 

problems for systems of ordinary differential 

equations. In particular, we start with a discussion of 

Euler’s method, describing its derivation and error 

estimates [2 §8.1, 3 §5.2, 20 §7.7]. We discuss issues 

of machine precision and round-off error. We quickly 

move to Runge-Kutta methods [2 §8.3, 3 §5.4]. Our 

coverage of Runge-Kutta methods is applications 

based, so we study implementation and error analysis; 

but we do not present the details of the derivation.

Next, we introduce students to the notion of a partial 

derivative. This is a standard part of the Calculus 3 

course; however many of our computer science 

students do not take Calculus 3. Rather than add to 

the prerequisites of the course, we introduce only 

what we actually need from the theory of partial 

derivatives. In particular, we discuss their definition 

and computation, as well as the chain rule. We omit 

many traditional topics, like their application to 

finding tangent planes, solely because they are not 

needed in the applications we have selected, and 

because our time is limited. 

Once students are familiar with the elementary 

properties of partial derivatives, we introduce them to 

modeling scientific problems with them. One 

successful approach has been to introduce Lagrangian 

dynamics [22]. This approach uses partial derivatives, 

but the result is a system of ordinary differential 

equations that can be solved using the Runge-Kutta 

techniques that have already been taught. We have 

also studied classical problems that result in partial 

differential equations proper, like the diffusion 

equation, and the wave equation. [6, 12] We then 

taught students finite difference methods for the 

solution of these equations [3 Chap. 12, 21]. We 

chose finite difference methods because of their 

conceptual similarity to Euler’s method and the 

Runge-Kutta methods that students learned in their 

study of ordinary differential equations. We have 

been successful introducing students to the concepts 

of consistency, stability and convergence of finite 

difference schemes, including a brief discussion of the 

Lax-Richtmyer Equivalence Theorem and the 

Courant-Friedrichs-Lewy Condition. [21, Chap. 1]  

Our emphasis on programming from the beginning is 

on object-oriented programming. We begin the course 

with a brief review of classes; we then introduce 

Visual C++ 6.0, and discuss its features. Students 

begin by learning how to construct dialog-based 

windows programs. Consequently, students are 

introduced to event-driven programming. At the 

outset, the programs are simple, with a few edit boxes 

and a few buttons, which enables us to introduce this 

concept gradually. 

After students have assimilated these topics, we 

introduce the graphical routines provided in MFC; in 

particular how to use the device contexts provided by 

MFC. We teach students how to create and initialize 

multiple dialog windows, and how to draw in each. 

Emphasis is placed on animating the results. The 

importance of good graphics and animation cannot be 

underestimated in scientific computing. 

We do not try to introduce the entire set of graphics 

classes available in MFC. Moreover, the portions of 

MFC that are taught are introduced one at a time, on 

an as needed basis. The sheer size of the MFC library 

prevents us from offering a comprehensive 

introduction even to just the graphical classes. 

Instead, students are introduced only to those classes 

and member functions that are required. 

As students progress through the course, we build on 

this foundation, introducing additional concepts. Of 

particular value have been the routines to take input 

from the mouse. Other routines that can be introduced 

handle saving and loading files, and printing.  

Our experience has not been confined to solely 

teaching dialog-based programs; we have also taught 

single-document-interface (SDI) programming. We 

found that SDI programs were more difficult for the 

students to understand. In part this is because the 

standard framework constructed by the MFC 

AppWizard includes a large number of features; so 

many that inexperienced programmers become 

overwhelmed. We recommend that instructors not 

begin the course with SDI programs, but they are 

probably suitable at the end of a course taught to 

strong programmers. 

There are a number of texts suitable as supplements 

that discuss programming and MFC; we specifically 

mention [1, 5, 23]. 
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5 Projects 

At the center of our course are the projects, four per 

semester. The first project is elementary. In it, we 

introduce MFC and dialog-based programs; we also 

review numerical integration and the numerical 

solution of ordinary differential equations. The 

scientific and modeling content is small, as we focus 

primarily on the programming and mathematical 

techniques that we will be using for the remainder of 

the course. 

The next two projects are at an intermediate level. In 

these projects, we introduce the graphical elements of 

MFC, as well as the modeling and solution of 

scientific problems resulting in systems of ordinary 

differential equations. 

We end the course with an advanced project that 

requires students model and solve a problem that 

results in a partial differential equation. Concurrently, 

we introduce additional elements of MFC, like the use 

of the mouse. 

The hardest part of teaching a course like this one is 

finding appropriate project topics. Here are some of 

the projects that either have been used for our class in 

the past, or will be used when the course is next 

offered.

Motion of a baseball with air resistance.  The 

motion of a baseball without air resistance is a simple 

classical problem that can be solved symbolically. 

When air resistance is included, the problem becomes 

much more difficult to solve. The general structure of 

the force due to air resistance can be found by 

dimensional analysis, and the precise form from 

experimental data; see [9, 14]. The problem results in 

a simple system of ordinary differential equations. 

In the project, we asked our students to find the angle 

at which to hit a baseball at a fixed velocity so that it 

would travel the farthest horizontal distance. 

The three-body problem. Newton’s law tells us that 

the force of gravity of one body, say a planet, on 

another is proportional to their masses and inversely 

proportional to the square of the distance between 

them [20, §13.4]. The three-body problem is to 

determine the motion of three bodies where the only 

force acting between them is the force of gravity. 

Even if we restrict our motion to the plane, in the 

nineteenth century Poincaré showed that, in effect, it 

is impossible to find an explicit formula that describes 

in general the solution to the three-body problem. It is 

however, possible to solve the resulting system of 

differential equations numerically.  

Our students wrote a program that simulated the 

motion of three bodies under gravity. Their program 

animates the numerical solution of the problem, and 

presents the motion graphically. A good project 

question would be to determine how many types of 

stable orbits that the students can find using their 

simulation. This question has more than a pedagogic 

interest, as mathematicians are still studying the 

question; see [4, 15, 18] for readable accounts of the 

current state of the field. 

Filter Circuits. A circuit consisting of a resistor, 

capacitor and inductor can be used as a filter circuit 

[19 §4.5], allowing some signal frequencies to pass 

while limiting others. This is an example of a 

phenomenon called resonance in differential 

equations [2, §3.9].  

The project consists of two parts. First students write 

a program that simulates the behavior of an LRC 

resonant filter. Then we give the students a signal 

composed of two sine waves of different, unknown 

frequencies and have them use their program to 

determine the component frequencies. 

Double pendulum. A double pendulum is a 

pendulum attached to the end of a second pendulum, 

the whole thing being constrained to move in a single 

plane. The model for a single pendulum is relatively 

easy to derive; however the double pendulum is much 

more complex. The best approach to modeling the 

double pendulum is to use Lagrangian dynamics [10 

pp. 355-357, 22]. This requires the instructor to 

introduce partial derivatives and some elements of the 

calculus of variations [7, IV §§1,10]. However, the 

resulting model is only a system of ordinary 

differential equations. 

For the project, we asked the students to determine if 

the system had sensitive dependence on initial 

conditions; namely would small changes in the initial 

positions of the pendulum cause large variations in 

the subsequent motion of the double pendulum. 

Spread of HIV. An area of cutting-edge concern is 

the modeling of the spread of the HIV virus through 

the human body. Perelson and Nelson in [17] describe 

a model for the dynamics of HIV infection that is 

suitable for student investigation. This work is based 

on the seminal paper of Perelson, Kirschner, and De 

Boer [16]. In addition to describing a model for the 

dynamics of infection, it also presents models for the 

effect of various treatment strategies, including the 

use of RT inhibitors and the use of protease inhibitors. 

Both of these models are also systems of ordinary 

differential equations. 
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One project would be to simulate the effect of RT 

inhibitors. It can be shown analytically that if the RT 

inhibitor is 100% effective then the number of virus 

particles in the blood will decay to zero. We ask the 

students to use the simulation to show that there is an 

effectiveness threshold; if the inhibitor is sufficiently 

effective then the virus will be gradually eliminated 

from the bloodstream, but below that point, the virus 

load will decay to a nonzero constant. 

Wave Motion.  Wave motion occurs in many 

different contexts, for example, compression waves 

arise when a solid object is struck, while transverse 

waves arise when a taut string is plucked. Both of 

these physical situations can be described by the same 

partial differential equation, the wave equation. A 

nice derivation of the wave equation in each of these 

contexts can be found in [6, Chap. 1] while a good 

general description of wave motion can be found in 

[12].  

We asked students to create simulations of the 

plucked taut string, and to investigate how the speed 

of the wave is related to the physical parameters of 

the string. 

Traffic Flow.  Traffic flow down a single road can 

also be modeled using partial differential equations; a 

nice derivation appropriate for our students is in [12, 

Chap. 16]. We can numerically solve the partial 

differential equation that governs traffic flow using 

the Lax-Friedrichs finite difference method; see [13, 

Chap. 10]. 

For the project, we asked students first to show that 

this model allows for the formation of traffic jams. 

These show up as a shock waves in the mathematical 

model and for this reason care must be used in the 

selection of the finite difference scheme used to solve 

the problem. We then asked the students to determine 

how the traffic jam would evolve; in particular does 

the point at which the traffic jam begins move, and if 

so does it move with or against the traffic. 

6 Evaluation 

Pilot versions of this course ran in the Fall 2000 

semester, and again in the Spring 2001 semester. 

One internal and one external evaluator examined the 

pilot course. In addition to class visitations, surveys 

were conducted at the beginning, in the middle and at 

the end of each semester. In addition, a follow up 

survey was conducted with the students in Fall 2000 

class. Because the number of students in each class 

was small, the findings from the evaluation activities 

should be taken as preliminary. 

There were more computer science majors in Fall 

2000 class than in Spring 2001 class, although the 

spring class included students who were double-

majors in Computer Science and Mathematics. While 

the majority of the Fall 2000 students were 

sophomores, all students in Spring 2001 were juniors 

or seniors. Thus, these two classes were somewhat 

different in their backgrounds. 

In spite of these differences, these students’ overall 

sentiment to the course can be summarized as, “It was 

challenging but I liked it.” Several reasons for the 

“challenging” nature of the course were suggested by 

the students. They include deficiencies in their 

background in mathematics, programming and/or 

science, the complexity of mathematics involved, and 

the difficulty of the course projects. The survey 

results suggested that learning something practical 

made the course interesting.  Several students 

indicated that they wished the course discussed in 

more depth the programming aspect of the course. 

The course has been well received by the students in 

general.  They enjoyed the course and many of them 

felt they learned much.   

As a consequence, this course has been approved by 

both the Computer and Information Sciences 

Department and the Mathematics Department as a 

regular course that will now become part of the 

curriculum. 
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