
 An Interdisciplinary Approach to

Scientific Modeling and Simulation

Mike O’Leary

Department of Mathematics

Towson University

moleary@towson.edu

Shiva Azadegan

Department of Computer and

Information Sciences

Towson University

azadegan@towson.edu

Abstract

We describe a model for an interdisciplinary course in

scientific modeling and simulation. We discuss the

course structure and content, as well as the results of

our evaluation process.

Keywords: Education, Simulation, Software

engineering

1 Introduction

This paper describes a new upper-level undergraduate

course in scientific modeling and simulation. The

course is centered on a sequence of projects, each

based on a realistic scientific problem. We teach the

students the mathematics necessary to model the

problem, and the numerical and computational

methods for its solution. We then teach the students

how to implement these methods using object-

oriented programming. We use Microsoft Visual C++

6.0 and its associated Microsoft Foundation Classes

(MFC). In particular, the students develop dialog-

based windows programs that take full advantage of

our computers’ graphical capabilities. The scientific

and programming aspects of the course are integrated

with one another and taught concurrently. The course

is inherently interdisciplinary, and has been team-

taught by one computer scientist and one applied

mathematician.

In this paper, we present the course model, including

a description of the course’s topics. We shall also

describe some of the projects that have been

developed especially for this course, together with

references. Finally, we shall present the results of our

evaluation of the effectiveness of the course.

We have two primary audiences for our course. First

are computer science majors who are looking for

additional experience with mathematics and scientific

applications. Second are majors in mathematics and

the sciences who wish to take a second course in

computing that is tailored to their discipline.

This course is valuable to our computer science

majors because it exposes them to realistic scientific

problems and the mathematics necessary for their

solution. The Steelman draft of Computing Curricula

2001 Computer Science [11, Chap. 9] recommends

that computer science majors take additional

mathematics in areas like numerical methods. They

also recommend that computer science majors engage

in an in-depth study of some subject that uses

computing in some substantive way. This course

meets these goals.

The course is also valuable to majors in the sciences.

Most of these students take only one general

introductory course in computer science. Our course

expands on the topics that they learned in their

introductory course and drives home the fundamental

importance of object-oriented programming in a

setting that is tailored for science and mathematics

students. The Steelman draft [11, Chap. 12]

emphasizes the need for computer science

departments to teach computing across the

curriculum, and holds up an example of a

computational science course as an example of an

area-wide or multidisciplinary course that our

departments can offer.

2 Audience

As we noted in our introduction, the primary audience

for our course consists of computer science majors

with an interest in science and mathematics, as well as

Proceedings of the Sixth International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing and First
ACIS International Workshop on Self-Assembling Wireless Networks (SNPD/SAWN’05)

0-7695-2294-7/05 $20.00 © 2005 IEEE

science and math majors who wish to take a second

course in computer science. Another group of

students that have taken the course are computer

science majors who are more interested in learning

MFC and windows programming than the scientific

content of the course. In part this is because we

currently do not have a course that covers MFC.

More interestingly, we have been approached by the

director of the graduate program in mathematics

education about the possibility of offering a graduate

level version of this course to in-service high school

teachers working towards their Master’s degrees.

The prerequisites for the course include our

Introduction to Computer Science I course, which

covers C++ programming up through classes. We also

require students to take Calculus 1 and Calculus 2.

Despite this minimal list of prerequisites, there are

many interesting and real scientific problems that can

be studied in the course.

3 Format

Our course is inherently interdisciplinary, and is

team-taught by one computer scientist and one

applied mathematician.

The course is organized around a series of projects.

Each project is a self-contained scientific question. As

an example, consider the following: At what angle

should a real baseball be thrown to maximize the

horizontal distance it will travel, taking into account

air resistance?

We begin each project by learning the mathematics

necessary to model the problem, and constructing that

model. We then teach the numerical analysis

necessary to construct an algorithm that can compute

the solution.

Next, we teach students the programming techniques

that are needed to implement the numerical method.

Our emphasis is on object-oriented programming

techniques. In particular, we use Visual C++ 6.0 and

MFC as our implementation language. This choice

was made because this is the language used in our

Introduction to Computer Science Programming 1

course. We focus our attention on dialog-based

windows programming that take full use of the

graphical capabilities of MFC.

Our course model is especially suited to teaching

object-oriented programming because the programs

break down naturally into routines for input, output

and computation. The programs are sufficiently

complex that the students see immediately the

benefits of this approach. The complexity of the

programs also drives home to the students the

importance of good software design; we spend class

time discussing this issue.

The programs that students write are not the end of

the course; they are used as tools to solve scientific

problems. Students find that, even if their program is

running correctly, it may not be giving them the

answers to the scientific questions that they need to

know. Because students use their programs as well as

write them, we find that students revise their

programs as they discover more about the scientific

problem.

The course itself is a mixture of traditional lecture and

computer laboratory. Our class met twice a week for

75 minutes, and we had a lecture component and a

laboratory component to nearly every class meeting.

Student progress is assessed primarily by project

reports. At the conclusion of each project, students

hand in a complete report of their investigations. The

report contains the mathematical model for the

problem, including an outline of its derivation. It also

describes the mathematics of the algorithm that is

used in the solution of the problem. Students discuss

the code for the program that they have written to

solve the problem. Finally, students describe the

results of their investigations, and draw conclusions.

We prefer this method of assessment because it helps

develop student’s communication skills. For some

projects, we allow the students to work in teams;

other projects are solved singly. Communication

skills and teamwork have been identified in the

Steelman draft of Computing Curricula 2001

Computer Science [11, §§ 9.1.4, 9.1.5] as an

important part of a good computer science

curriculum.

Our experience using this method of assessment has

been positive. However, we find that when there is

one deadline for the entire project, students work on

their programs right up to the deadline, and

consequently do not spend sufficient time analyzing

the results and drawing conclusions. We recommend

that adopters of this method have two deadlines, one

for the program and a later date for the project report.

4 Topics

We teach the course by examining a sequence of

projects. As a part of each project, we teach the

Proceedings of the Sixth International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing and First
ACIS International Workshop on Self-Assembling Wireless Networks (SNPD/SAWN’05)

0-7695-2294-7/05 $20.00 © 2005 IEEE

students some new mathematics and some new

programming techniques.

Mathematically, we begin by reviewing the usual

methods for numerical integration; in particular, we

discuss the Trapezoidal Rule and Simpson’s Rule.

These topics are now a standard part of most calculus

sequences [20 §7.7]. Next, we teach students how to

model problems using ordinary differential equations.

We continue with methods for solving initial value

problems for systems of ordinary differential

equations. In particular, we start with a discussion of

Euler’s method, describing its derivation and error

estimates [2 §8.1, 3 §5.2, 20 §7.7]. We discuss issues

of machine precision and round-off error. We quickly

move to Runge-Kutta methods [2 §8.3, 3 §5.4]. Our

coverage of Runge-Kutta methods is applications

based, so we study implementation and error analysis;

but we do not present the details of the derivation.

Next, we introduce students to the notion of a partial

derivative. This is a standard part of the Calculus 3

course; however many of our computer science

students do not take Calculus 3. Rather than add to

the prerequisites of the course, we introduce only

what we actually need from the theory of partial

derivatives. In particular, we discuss their definition

and computation, as well as the chain rule. We omit

many traditional topics, like their application to

finding tangent planes, solely because they are not

needed in the applications we have selected, and

because our time is limited.

Once students are familiar with the elementary

properties of partial derivatives, we introduce them to

modeling scientific problems with them. One

successful approach has been to introduce Lagrangian

dynamics [22]. This approach uses partial derivatives,

but the result is a system of ordinary differential

equations that can be solved using the Runge-Kutta

techniques that have already been taught. We have

also studied classical problems that result in partial

differential equations proper, like the diffusion

equation, and the wave equation. [6, 12] We then

taught students finite difference methods for the

solution of these equations [3 Chap. 12, 21]. We

chose finite difference methods because of their

conceptual similarity to Euler’s method and the

Runge-Kutta methods that students learned in their

study of ordinary differential equations. We have

been successful introducing students to the concepts

of consistency, stability and convergence of finite

difference schemes, including a brief discussion of the

Lax-Richtmyer Equivalence Theorem and the

Courant-Friedrichs-Lewy Condition. [21, Chap. 1]

Our emphasis on programming from the beginning is

on object-oriented programming. We begin the course

with a brief review of classes; we then introduce

Visual C++ 6.0, and discuss its features. Students

begin by learning how to construct dialog-based

windows programs. Consequently, students are

introduced to event-driven programming. At the

outset, the programs are simple, with a few edit boxes

and a few buttons, which enables us to introduce this

concept gradually.

After students have assimilated these topics, we

introduce the graphical routines provided in MFC; in

particular how to use the device contexts provided by

MFC. We teach students how to create and initialize

multiple dialog windows, and how to draw in each.

Emphasis is placed on animating the results. The

importance of good graphics and animation cannot be

underestimated in scientific computing.

We do not try to introduce the entire set of graphics

classes available in MFC. Moreover, the portions of

MFC that are taught are introduced one at a time, on

an as needed basis. The sheer size of the MFC library

prevents us from offering a comprehensive

introduction even to just the graphical classes.

Instead, students are introduced only to those classes

and member functions that are required.

As students progress through the course, we build on

this foundation, introducing additional concepts. Of

particular value have been the routines to take input

from the mouse. Other routines that can be introduced

handle saving and loading files, and printing.

Our experience has not been confined to solely

teaching dialog-based programs; we have also taught

single-document-interface (SDI) programming. We

found that SDI programs were more difficult for the

students to understand. In part this is because the

standard framework constructed by the MFC

AppWizard includes a large number of features; so

many that inexperienced programmers become

overwhelmed. We recommend that instructors not

begin the course with SDI programs, but they are

probably suitable at the end of a course taught to

strong programmers.

There are a number of texts suitable as supplements

that discuss programming and MFC; we specifically

mention [1, 5, 23].

Proceedings of the Sixth International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing and First
ACIS International Workshop on Self-Assembling Wireless Networks (SNPD/SAWN’05)

0-7695-2294-7/05 $20.00 © 2005 IEEE

5 Projects

At the center of our course are the projects, four per

semester. The first project is elementary. In it, we

introduce MFC and dialog-based programs; we also

review numerical integration and the numerical

solution of ordinary differential equations. The

scientific and modeling content is small, as we focus

primarily on the programming and mathematical

techniques that we will be using for the remainder of

the course.

The next two projects are at an intermediate level. In

these projects, we introduce the graphical elements of

MFC, as well as the modeling and solution of

scientific problems resulting in systems of ordinary

differential equations.

We end the course with an advanced project that

requires students model and solve a problem that

results in a partial differential equation. Concurrently,

we introduce additional elements of MFC, like the use

of the mouse.

The hardest part of teaching a course like this one is

finding appropriate project topics. Here are some of

the projects that either have been used for our class in

the past, or will be used when the course is next

offered.

Motion of a baseball with air resistance. The

motion of a baseball without air resistance is a simple

classical problem that can be solved symbolically.

When air resistance is included, the problem becomes

much more difficult to solve. The general structure of

the force due to air resistance can be found by

dimensional analysis, and the precise form from

experimental data; see [9, 14]. The problem results in

a simple system of ordinary differential equations.

In the project, we asked our students to find the angle

at which to hit a baseball at a fixed velocity so that it

would travel the farthest horizontal distance.

The three-body problem. Newton’s law tells us that

the force of gravity of one body, say a planet, on

another is proportional to their masses and inversely

proportional to the square of the distance between

them [20, §13.4]. The three-body problem is to

determine the motion of three bodies where the only

force acting between them is the force of gravity.

Even if we restrict our motion to the plane, in the

nineteenth century Poincaré showed that, in effect, it

is impossible to find an explicit formula that describes

in general the solution to the three-body problem. It is

however, possible to solve the resulting system of

differential equations numerically.

Our students wrote a program that simulated the

motion of three bodies under gravity. Their program

animates the numerical solution of the problem, and

presents the motion graphically. A good project

question would be to determine how many types of

stable orbits that the students can find using their

simulation. This question has more than a pedagogic

interest, as mathematicians are still studying the

question; see [4, 15, 18] for readable accounts of the

current state of the field.

Filter Circuits. A circuit consisting of a resistor,

capacitor and inductor can be used as a filter circuit

[19 §4.5], allowing some signal frequencies to pass

while limiting others. This is an example of a

phenomenon called resonance in differential

equations [2, §3.9].

The project consists of two parts. First students write

a program that simulates the behavior of an LRC

resonant filter. Then we give the students a signal

composed of two sine waves of different, unknown

frequencies and have them use their program to

determine the component frequencies.

Double pendulum. A double pendulum is a

pendulum attached to the end of a second pendulum,

the whole thing being constrained to move in a single

plane. The model for a single pendulum is relatively

easy to derive; however the double pendulum is much

more complex. The best approach to modeling the

double pendulum is to use Lagrangian dynamics [10

pp. 355-357, 22]. This requires the instructor to

introduce partial derivatives and some elements of the

calculus of variations [7, IV §§1,10]. However, the

resulting model is only a system of ordinary

differential equations.

For the project, we asked the students to determine if

the system had sensitive dependence on initial

conditions; namely would small changes in the initial

positions of the pendulum cause large variations in

the subsequent motion of the double pendulum.

Spread of HIV. An area of cutting-edge concern is

the modeling of the spread of the HIV virus through

the human body. Perelson and Nelson in [17] describe

a model for the dynamics of HIV infection that is

suitable for student investigation. This work is based

on the seminal paper of Perelson, Kirschner, and De

Boer [16]. In addition to describing a model for the

dynamics of infection, it also presents models for the

effect of various treatment strategies, including the

use of RT inhibitors and the use of protease inhibitors.

Both of these models are also systems of ordinary

differential equations.

Proceedings of the Sixth International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing and First
ACIS International Workshop on Self-Assembling Wireless Networks (SNPD/SAWN’05)

0-7695-2294-7/05 $20.00 © 2005 IEEE

One project would be to simulate the effect of RT

inhibitors. It can be shown analytically that if the RT

inhibitor is 100% effective then the number of virus

particles in the blood will decay to zero. We ask the

students to use the simulation to show that there is an

effectiveness threshold; if the inhibitor is sufficiently

effective then the virus will be gradually eliminated

from the bloodstream, but below that point, the virus

load will decay to a nonzero constant.

Wave Motion. Wave motion occurs in many

different contexts, for example, compression waves

arise when a solid object is struck, while transverse

waves arise when a taut string is plucked. Both of

these physical situations can be described by the same

partial differential equation, the wave equation. A

nice derivation of the wave equation in each of these

contexts can be found in [6, Chap. 1] while a good

general description of wave motion can be found in

[12].

We asked students to create simulations of the

plucked taut string, and to investigate how the speed

of the wave is related to the physical parameters of

the string.

Traffic Flow. Traffic flow down a single road can

also be modeled using partial differential equations; a

nice derivation appropriate for our students is in [12,

Chap. 16]. We can numerically solve the partial

differential equation that governs traffic flow using

the Lax-Friedrichs finite difference method; see [13,

Chap. 10].

For the project, we asked students first to show that

this model allows for the formation of traffic jams.

These show up as a shock waves in the mathematical

model and for this reason care must be used in the

selection of the finite difference scheme used to solve

the problem. We then asked the students to determine

how the traffic jam would evolve; in particular does

the point at which the traffic jam begins move, and if

so does it move with or against the traffic.

6 Evaluation

Pilot versions of this course ran in the Fall 2000

semester, and again in the Spring 2001 semester.

One internal and one external evaluator examined the

pilot course. In addition to class visitations, surveys

were conducted at the beginning, in the middle and at

the end of each semester. In addition, a follow up

survey was conducted with the students in Fall 2000

class. Because the number of students in each class

was small, the findings from the evaluation activities

should be taken as preliminary.

There were more computer science majors in Fall

2000 class than in Spring 2001 class, although the

spring class included students who were double-

majors in Computer Science and Mathematics. While

the majority of the Fall 2000 students were

sophomores, all students in Spring 2001 were juniors

or seniors. Thus, these two classes were somewhat

different in their backgrounds.

In spite of these differences, these students’ overall

sentiment to the course can be summarized as, “It was

challenging but I liked it.” Several reasons for the

“challenging” nature of the course were suggested by

the students. They include deficiencies in their

background in mathematics, programming and/or

science, the complexity of mathematics involved, and

the difficulty of the course projects. The survey

results suggested that learning something practical

made the course interesting. Several students

indicated that they wished the course discussed in

more depth the programming aspect of the course.

The course has been well received by the students in

general. They enjoyed the course and many of them

felt they learned much.

As a consequence, this course has been approved by

both the Computer and Information Sciences

Department and the Mathematics Department as a

regular course that will now become part of the

curriculum.

7 Acknowledgements

This material is based upon work supported by the

National Science Foundation under Grant No. DUE

9952625.

References

[1] Bates, J. and Tompkins, T. Practical Visual C++

6, Que Corporation, 1999.

[2] Boyce, W. and DiPrima, R.C. Elementary

Differential Equations, sixth edition, John Wiley

& Sons Inc., 1997.

[3] Burden, R.L., and Faires, J.D. Numerical

Analysis, sixth edition, Brooks/Cole Publishing,

1997.

Proceedings of the Sixth International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing and First
ACIS International Workshop on Self-Assembling Wireless Networks (SNPD/SAWN’05)

0-7695-2294-7/05 $20.00 © 2005 IEEE

[4] Casselman, B. A New Solution to the Three Body

Problem - and More. Online. Internet. Available

WWW: http://www.ams.org/new-in-

math/cover/orbits1.html

[5] Chapman, D. and Heaton, J. Teach Yourself

Visual C++ 6 in 21 Days, Sams Publishing, 1999.

[6] Churchill, R.V. and Brown, J.W. Fourier Series

and Boundary Value Problems, fourth edition,

McGraw Hill, 1987.

[7] Courant, R and Hilbert, D. Methods of

Mathematical Physics, volume 1, John Wiley &

Sons, 1953.

[8] Feldman, J. The Animated Telegraph Equation,

Online. Internet. WWW:

http://www.math.ubc.ca/~feldman/apps/telegrph.p

s and

http://www.math.ubc.ca/~feldman/demos/demo8.

html

[9] Frohlich, C. Aerodynamic Drag Crisis and its

Possible Effect of the Flight of Baseballs.

American Journal of Physics, 52:4 (1984), 325-

334.

[10] Hestenes, D. New Foundations for Classical

Mechanics, D. Riedel Publishing, 1987.

[11] The Joint Task Force on Computing Curricula,

IEEE Computer Society and the Association for

Computing Machinery, Computing Curricula

2001, Steelman Draft, August 1, 2001. Online.

Internet. WWW:

http://www.acm.org/sigs/sigcse/cc2001/steelman/

index.html

[12] Knobel, R. An Introduction to the Mathematical

Theory of Waves, American Mathematical

Society, 2000.

[13] LeVeque, R.J. Numerical Methods for

Conservation Laws, Birkhäuser Verlag, 1992.

[14] Long, L. N and Weiss, H. The Velocity

Dependence of Aerodynamic Drag: A Primer for

Mathematicians. The American Mathematical

Monthly, 106:2 (1999), 127-135.

[15] Montgomery, R. A New Solution to the Three-

Body Problem. Notices of the American

Mathematical Society 48:5 (2001), 471-481.

[16] Perelson, A.S., Kirschner, D.E., and De Boer, R.

Dynamics of HIV Infection of CD4+ T Cells.

Mathematical Biosciences, 114 (1993), 81-125.

[17] Perelson, A.S. and Nelson, P.W. Mathematical

Analysis of HIV-I in vivo. SIAM Review, 41:1

(1999), 3-44.

[18] Simó, C. Three Body Choreopgraphies. Online.

Internet. Available WWW:

http://www.maia.ub.es/dsg/3body.html

[19] Sprott, J.C. Introduction to Modern Electronics,

John Wiles & Sons Inc., 1981.

[20] Stewart, J. Calculus. Early Transcendentals,

fourth edition, Brooks/Cole 1999.

[21] Strikwerda, J.C., Finite Difference Schemes and

Partial Differential Equations, Wadsworth &

Brooks/Cole, 1989.

[22] Wells, D.A. Theory and Problems of Lagrangian

Dynamics, Schaum’s Outline Series, McGraw

Hill, 1967.

[23] Yang, D. C++ and Object-Oriented Numeric

Computing, Springer-Verlag, 2001.

Proceedings of the Sixth International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing and First
ACIS International Workshop on Self-Assembling Wireless Networks (SNPD/SAWN’05)

0-7695-2294-7/05 $20.00 © 2005 IEEE

